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Abstract This paper provides the technical details, which for spastictions could
not be included in the main paper '"Modelling non-statiordygamic gene regulatory
processes with the BGM model’ submitted to iemputational Statisticpurnal.
The three sections of this paper are organized as followSektion 1 we provide
details about the Gaussi&Gescoring metric for static Bayesian networks as devel-
oped by Geiger and Heckerman [1]. TB&escoring metric for dynamic Bayesian
networks is described in detail in Section 2. Section 3 isxareled version of the
methodology section of our main paper. We note that Sulsec.1 and 3.2 have
been modified slightly by adding references to the equafiwagided in Sections 1
and 2 of this supplementary paper. Subsection 3.3 is anantizty extended ver-
sion of Section 2.3 (main paper) and provides all detailhefdhangepoint process
from Green’s RIMCMC paper [2].

Availability: This supplementary paper is available from:
http://lwww.statistik.tu-dortmund.de/cost2010.html

1 The Gaussian BGe scoring metric for static Bayesian netwés

This section describes the linear Gaussian BGe scoringa{Bayesian metric for
Gaussian networks having score equivalence) for statieflag networks as devel-
oped by Geiger and Heckerman [1]. Given a datalsetith m observations of the
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variablesX, ..., Xn:

D11 D12 ... Dym-1 Dim

D21 D22 ... Dam-1 Dom

D= 1)

Dn,1 DNz ... DNm-1 Dnm

so thatDy, j denotes thgth realization of theith nodeX,, and thejth column ofD:
D= (DLJ‘,...,DN,J‘)T is the jth realization vector of the variables. The Gaussian
BGe model assumes that the observation vedgs(j = 1,...,m) are a random
sample from a multivariate Gaussian distributighi(u, ) with an unknown mean
vectort and an unknown covariance matéix The prior joint distribution ofu and
W = > 1is supposed to be the normal-Wishart distribution, thathis,conditional
distribution ofu givenW is 4" (g, (v-W)~1) with v > 0, and the marginal distribu-
tion of W is a Wishart distribution wittr > N + 1 degrees of freedom and precision
matrix T, denoted? (a,To). The conditiona > N + 1 ensures that the second mo-
ments of the posterior distribution are finite (see also B) {n [1]). Geiger and
Heckerman show that the marginal likelihoBdD|¥) of the dataD given a graph
¢ can then — under fairly weak conditions of parameter inddpeoe and parameter
modularity — be computed in closed form. We define:

Tom:= To+SD.m+\;/_:nm(No—D7m)(No—D7m)T (2)

where oy
Dpp = — ;D_,,— (3)

is the mean of thenrealization vectors and
Somi= 3 (D~ Om) - (D.; — D)’ @

j=1

To, Hg, o, andv are hyperparameters of the normal-Wishart prior and haveeto
specified in advancd.g is anN-by-N matrix, g is aN-by-1 column vector, ang
anda are 1-dimensional and usually referred to as total priocipiren parameters.
Furthermore, we set:

-1
L
c(n,a) = 4 20/2. (n-1/4, I_(a)} -
{ iEl 2

The marginal likelihood can then be computed as follows)([1]

N N p(D{Xnﬁm}‘%({xn )
P(D|¥) = [1W¥ (D) = , 3
) rDl () ,Dl P(D{m} % (1)) (6)

whereX, is thenth variable,r, is the parent set of, in the graph, D*»} and
D{™} are the data submatrices corresponding to the realizatibtie variables in
the setg Xy, m} and{m, } only, and¥r ({Xn, T }) and¥s (1) correspond to so-called



3

full graphsfor the variable subsetsX,, ii,} and{m,}, that is, to subgraphs with the
maximal number of edges so that the subgraphs do not impgssadapendence
restrictions on these subsets of variables.

The marginal likelihood of the data sub$2tS c D corresponding to then re-
alizations of theNT-dimensional subsed c {X1,..., Xy} of theN variables given a
full graph%e (S) for the sub-domaits can be computed as follows ([1]):

N2 (Nt )
o

POk (8) = (21" { e

vV+m

+m

det(T3) 2 -det(T5 )~ "2

wheredet(T5) anddet(T3 ) denote the determinants of the submatritgsand
qum consisting only of thos&™ rows and columns that correspond to variables in

the subseB Tpm was defined in Eq. (2), andN',a) andc(N',a + m) can be
computed with Eq. (5).

2 The Gaussian BGe scoring metric for dynamic Bayesian netwks

We now consider the case that instead of independent obissryatime series data
have been collected for the domafdfy (t),... Xn(t))i=1,...m, and that we have a (1st-
order) Markovian dependence structure. In this case, dim&ayesian networks
(DBNSs) can be employed. In DBNs each edge corresponds totaraation with a
time delayr; e.g. fort = 1 an edge pointing fronX; to X; means that the realiza-
tion x;+ of X; at time pointt is influenced by the realizatiox(t — 1) of X; at the
previous time point — 1. This can be taken into consideration in the context of the
Gaussian BGe model by building new data matrices — one fdr damain variable

— from the original data matrix of sizé-by-mgiven in Eq. (1). For dynamic data the
columns do not represent independent (steady-state)valtiesrs: thetth column of

D is the realization of the variables at time point = 1,...,m). We note that the
score equivalence aspect of BB&emodel is not required for dynamic Bayesian net-
works, because edge reversals are not permissible. Howermulating the models
in terms of theBGescore is advantageous in case one intends to adapt the foknew
proposed in the main paper to non-linear static Bayesianarks along the line of
[5].

In principle, there are two alternatives which can be used, ia depends on
whether or not 'self-feedback loops’, that is edges havirgtame node as starting
and end point, should be allowed in the network. Here, wenaltiy 'self-feedback
loops’, and we build the followindN matrices of siz&N + 1)-by-(m— 1) from the



(time series) data matrix given in Eq. (1) :

D11 D12 ... Dim
D21 D22 ... Dam-1
Dm=| : = : C)
Dn,1 DNz ... Dnm-1
Dn72 Dn,3 “es Dn’m

n=1,...,N. That is, we obtairD(n) by deleting the last column @ and adding a
novel row(Dp2,...,Dnm), i.e. thenth row of D shifted leftwards by 1, as tH&N + 1)-
th row. We can identify théN + 1)-th row with a new domain variabl¥y. 1. This
new variable is theth domain variable with a time shift of size= 1 and we note
that the novel data matric&(n) consist of observations fot + 1 domain variables
so that the hyperparametéksand o have to be aiiN + 1)-by-(N + 1) matrix and an
(N+1)-by-1 column vector, respectively, here. As before we canpmde the matrix
Tp(n) for each data sdd(n), and we replace Eq. (6) by:

=2

P(D|¥) = 1W(Dr’?“) 9)

where
P(D(n) X Tl e ({Xns1, Th})

YO = B B eI (m) 4o
Eq. (7) has to be replaced by:
Nt (o1 NT/2 Nt
PID(M)S%(S) = (2m) = - {\,Jr(r\;_l)} ’C(NTCC(H’(Or;)_ 1))
Ael(TS)? -dellTS 1) " 7
(11)

where% (S) is a full graph for the domain variable subSaif cardinalityN' andTg

andTg(n)’(m_l) are sub-matrices as explained in Section 1.

3 Methodology
3.1 The dynamic BGe network (duplicated from the main paper)

Dynamic Bayesian networkBBNSs) are flexible models for representing probabilis-
tic relationships among variableg, ..., Xy. The graph¢ of a DBN describes the
relationships among the variables, which have been mehsdrequidistant time
pointst = 1,....m, in the form of conditional probability distributions. Ardge
pointing fromX; to X; means that the realisation ¥f at time pointt, symbolically:



(a) recurrent network (b) unfolded dynamic network (DBN)

Fig. 1 State space graph and corresponding dynamic Bayesiaretwork. (a) Recurrent state space
graph containing two nodes. Nodehas a recurrent self-loop and acts as a regulator of Node) The
bipartite graph structure (DBN) imposed by the grapm panel (a).

X;(t), is influenced by the realisation ¥f at time point — 1, symbolically:X; (t —1).
T = TH(¥) denotes the parent node set of no@en ¢, i.e. the set of all nodes from
which an edge points to nod§, in 4. In principle, each node can be its own par-
ent node in DBNSs. Such self-loop&(t — 1) — X,(t) model autocorrelations, and it
depends on the application whether or not they should bevatloAlternatively, self-
loops can be ruled out altogether to focus on a gene’s interscwith other genes.
We note that a DBN is based on a bipartite graph structuredsetiwo time steps
andt + 1 so that the acyclicity constraint — known from static Bégesietworks — is
guaranteed to be satisfied. The bipartite graph structubdBd{s is illustrated graph-
ically in Fig. 1. The figure shows the state space repredentéd) and the bipartite
graph structure of the corresponding DBN (b). The networksgsis of two interact-
ing nodesX andY. NodeX regulates nod¥, andX also has a regulatory self-loop
acting back on itself.

Given a data seD, whereDy; andDy ; are thetth realisations<,(t) and mi(t)
of X, and 1%, respectively, DBNs are based on the following homogenétarkov
chain expansion:

N m
P(D|¥4,0) = UJlP(Xn(t) =Dnt|Th(t —1) = Dpt-1,6n) (12)

where8 is the total parameter vector, composed of subvedgrg, specifies the
nth local conditional distributio®(Xs(t)| T (t — 1), 8r) in the factorisation. We note
that in DBNs with time lagr = 1 the first time point = 1 cannot be employed for
computing the likelihood in Eq. (12), since the realisasiarf potential parent nodes
at the previous time poirtt= 0 are unknown. The BGe model [1] from Section 2
specifies the distributional for®(D|¢,0) = P(D|¥4, (u,W~1)) as a multivariate
Gaussian distribution with expectation vectoand precision matri¥V, and assumes
a normal-Wishart distribution as prior distributi®tu, W|¥). The local probability
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distributionsP(X, ()| m(t — 1), 8,) are then given by conditional linear Gaussian dis-
tributions. Under fairly weak conditions imposed on thegmaeter vectof and the
prior distributionP(8), the parameters can be integrated out analytically as shiown
Section 2 and the marginal likelihood satisfies the sameresipa rule as the DBN
with fixed parameters [1]:

P(D|%) = /P(D|g,e)P(e\g)de - H w(Dm) (13)

n=1

where
v = [ ﬁp(xna) = Dnal7h(t 1) = Dre-1,0n)P(0nlTH)d0n  (14)
t=

andD/P := {(Dnt,Drt-1) 1 2 <t < m} denotes the subset of the data pertaining
to nodeX, and its parent sety,. For the Gaussian BGe model the (local) factors
W(D/?) in Eq. (14) can be computed in closed-form according to Eb@) énd (11)

in Section 2.

A sample of graphs from the posterior distributiB(¢|D) can be obtained with
Markov chain Monte Carlo (MCMC) simulations. The structtd€MC algorithm of

[6] generates a sample of graphs as follows: A new candidaghg . ; is randomly
drawn out of the set of graphg’ (%) that can be reached from the current graph
by deletion or addition of a single edge, and the proposegigfa 1 is accepted with
probability A(411|%) = min{R, 1} where

r_ POI+)P(@ 1) | (%)
P(DIZ)P(4) A (%11l

otherwise the chain is left unchangedl; ; := %. For each edge the fraction of sam-
pled graphs that contain this edge is an estimator of itsdimal) posterior proba-
bility. If the true network is known, the reconstruction acacy can for example be
measured in terms of receiver operator characteristic (RDes (e.g. [4]). We as-
sume thaty; = 1 indicates that there is an edge frofnto X; in the graph, while

&; = O indicates that this edge is not present. BNs infer margioaterior probabili-
tiesg; for each edge;.

Let£(6) = {aj|gj > 6} denote the set of edges whose probabilities exceed a given
thresholdf. Given 8 the number of true positive (TP), false positive (FP), arsefa
negative (FN) edge findings can be counted, andsémsitivity S= TP/(TP+FN)

and theinverse specificity + FP/(T N+ FP) can be computed. This procedure can
be repeated for several valuestoéind the ensuing sensitivities can be plotted against
the corresponding inverse specificities. This gives the RO®e. Larger areas un-
der the curve (AUC) indicate a better network reconstrucpierformance, where
AUC= 1 is an upper limit, while AUE- 0.5 corresponds to random expectation. An
alternative and more intuitive criteria is given iy P|TP = 10) counts: For each
MCMC output a thresholdy is imposed on the inferred edge posterior probabilities
such that 10 true positive (TP) edges are extracted and thesponding number of
false positive (FP) edges, symbollicglyP| T P = 10), exceeding the thresholf, is
counted.

(15)



3.2 The dynamic Bayesian Gaussian Mixture (Bg@NBayesian network model
(duplicated from the main paper)

In the Gaussian BGe model the local distributi®{¥n(t)|m(t — 1), 8,,) are condi-
tional linear Gaussian distributions so that only linedatienships among variables
can be inferred. We generalise the BGe model by the intramluctf a latent allo-
cation vectorV, which assigns the data points kodifferent mixture components,
whereK is inferred from the data by applying changepoint birth aedtd moves,
along the line of the reversible jump Markov chain Monte 64RIJMCMC) algo-
rithm of [2]. As in the original BGM model [3], conditional athe latent vecto¥, a
separate BGe score can be computed for each df tméture components.

The allocation vectol of size m describes the allocation of the time poinits-
2,...,mto theK compartmentsV(t) = k denotes that time poirt(2 <t <m) is
allocated to thé-th compartment (¥ k < K), andD(V¥ denotes all time points that
are allocated to compartmekt

The posterior probability o7, V andK is proportional to the joint distribution:

P(¥,V,K,D)

P(¥4,V,K|D) = FD)

OP(%,V,K,D) (16)

and the joint distribution can be factorised as follows ia BGMp model:

P(¢,V,K,D) = P(K)P(V|K)P(¢)P(D|¥,V,K) 17)

where .
P(D|#,V K) |‘| POV R|g) = [ ¥(O™) (18)

k=1n=1

andDy ™ .= {(Dny,Dr—1)lt € {2,...,m} : V(t) = k} denotes the set of realisa-
tions of nodeX, and its parent set, for those time points that have been allocated to
the kth component. It can be seen from these equationsvtats as a filter which
divides the dat® into K different compartment®(V¥ (k= 1...K), for which sep-
arate independent BGe scores can be computed in closeds8ing Egns. (13) and
(14). The BGM, counterpart of Eq. (14) is given by:

WK™ = [ T PO(0) = Dnel7h(t ~ 1) = Dr-1,80)P(6nlTh)d01 (19)
V() =k

When a data compartmebt¥*) is empty, then we set the factd#é(DﬁV’k)’m‘) equal
tol(n=1,...,N). TheW(DﬁV’k)’”‘) terms that correspond to non-empty data (sub)sets
ng.,km can be computed with Eqgn. (10) and (11) from Section 2. Tha setD/"

in Eq. (10) has to be replaced by the subeé/tk)’m, andD(n)Sin Eq. (11) has to be

s
replaced by the subséD,ﬁV’k)’m(n))

For P(¢) we take a uniform distribution over all graph structuresjseiato a fan-in

restriction of|m| < 3, and forP(K) we take a truncated Poisson distribution with
A = 1 restricted to I< K < K* as prior. In our applications we s&t* = 10, i.e.



we restrict the maximal number of compartmekitso 10. We note that the MCMC
inference scheme, which we will discuss in the next subsegctioes not samphé di-
rectly, but is based on local modifications\bbased on changepoint birth, death and
reallocation moves. That is, different from the free altomain the BGM model [3],

we here elect to change the assignment of data points to amnpovia a change-
point process [2]. This reduces the complexity of the aliecaspace and incor-
porates our prior knowledge that adjacent time points &edylito be assigned to
the same component. We identify with K — 1 changepointsb,,...,bx_1 on the
continuous interval2,m], and for notational convenience we introduce the pseudo-
changepointdy = 2 andbx = m. The observation at time pointis assigned to
the kth component, symbolically/ (t) = k, if bx_1 <t < by. Following [2] we as-
sume that the changepoints are distributed as the evenerathbrder statistics of

L :=2(K—1)+1 pointsu,...,u_ uniformly and independently distributed on the
interval [2,m]. The motivation for this prior, instead of taking— 1 uniformly dis-
tributed points, is to encouragepriori equal spacings between changepoints, i.e. to
discourage (too) short segments.

3.3 MCMC inference (extended version of the main paper)

We now describe an MCMC inference algorithm that can be usethtain a sample
{9 ,V,K'}i_1,_, from the posterior distributioR(¢,V,K|D). Our algorithm com-
bines the structure MCMC algorithm for Bayesian networks\{ish the changepoint
model (e.g. see [2]), and draws on the fact that conditionahe allocation vector
V, separate BGe scor@$D(V¥|«) can be computed for th¢ data compartments.
Note that this approach is equivalent to the idea underlytiregallocation sampler
[7]. The resulting algorithm is effectively an RIMCMC saingl scheme in the dis-
crete space of network structures and latent allocatiotov®onvhere the Jacobian in
the acceptance criterion is always 1 and can be omitted. puithability p = 0.5 we
perform a traditional structure MCMC move on the currentgr#' and leave the
latent vectoV and the number of mixture componemtsinchanged, symbolically:
Vitl = viandKi+1 = Ki. A new candidate grap#'+* is randomly drawn out of the
set of graphs# (¢') that can be reached from the current grafitby deletion or
addition of one single edge. The proposed gr&bht is accepted with probability:

A(gmgi):min{l’P<D|f¢“,vnKi> P 1) wgm} 20

POIZ VLK)~ P@) [ ()

where|.| is the cardinality, and the marginal likelihood terms haeerbspecified in
Eq. (18). The graph is left unchanged, symbolicafly! := ¢!, if the move is not
accepted. We note that the network reconstruction will lseti@n the marginal pos-
terior probabilities of the individual edges, which can btreated for each edge from
the MCMC sample/?, ..., %' by the fraction of graphs in the sample that contain the
edge of interest:

|
E =Sl (%k 21
J k; (@) (21)
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wherelkj(.) is the indicator function Withi7j(gk) =1 if there is an edge from; to
Xj in¢x.

V\J/ith the complementary probability-1p we leave the graph unchanged:* = ¢/,
and perform a move ofV/', K'). We change the current number of componétitgia

a changepoint birth or death move, or the allocation ve¢tdsy a changepoint re-
allocation move along the lines of the Reversible Jump Maxdtwain Monte Carlo
algorithm (RIMCMC) algorithm [2].

The changepoint birth (death) move increases (decrekéés)1 and may also have
an effect onV'. The changepoint reallocation move lea¥dsunchanged and may
have an effect ov'. If with probability (1 — p) a changepoint move ofK', V') is
performed, we randomly draw the move type. Under fairly mélgularity conditions
(ergodicity), the MCMC sampling scheme converges to théreld posterior distri-
bution if the equation of detailed balance is fulfilled [2hd condition of detailed
balance implies that for each move a complementary movefisedk and that the
acceptance probability depends on the proposal probabiflithe complementary
move. The moves presented below are designed such thaisrermique comple-
mentary death move for each birth move and vice-versa. Mereeach reallocation
move can be reversed by a single (complementary) realtotatiove. The accep-
tance probabilities for these three changepoint mékésv') — (Ki+1,vi+l) are of
the following form [2]:

P(D‘gi7vi+l,Ki+l)
P(D|¢",V!,K)

A:min{l, x Rx B} (22)

whereR = P(VIT1|Ki+1)P(Ki*1) /P(VI|KP(K!) is the prior probability ratio, and
B is the inverse proposal probability ratio. The exact fornitafse factors depends
on the move type. (i) For a changepoint reallocation (r) welaamly select one of
the existing changepoinkg € {by,...,bk_1}, and the replacement valbé is drawn
from a uniform distribution orjb;_1,bj;1] whereby = 2 andbx = m. Hence, the
proposal probability ratio is one, the prior probabilitRé<+1) = P(K') cancel out,
and the remaining prior probability ratiB(V'+1|Ki+1)/P(Vi|K') can be obtained
from p.720 in Green’s RIMCMC paper [2]:

(bj41—b]) (bl —bj_1)
_ B —1 23
R (bjr1—bj)(bj—bj_1)" (@3)

If there is no changepoinK( = 1) the move is rejected and the Markov chain is
left unchanged. (i) If a changepoint birth move (b) khis proposed, the location
of the new changepoirt' is randomly drawn from a uniform distribution on the
interval [2,m]; the proposal probability for this move b /(m— 2), whereby; is
the K'-dependent) probability of selecting a birth move. The regedeath move,
which is selected with probabilit&(KiH), consists in discarding randomly one of the
(K' — 1) +1 =K' changepoints. The inverse proposal probability ratio i thiven
by B = dxi_ 1)(m—2)/byi K'. The prior probability ratio is given by the expression
at the bottom of p.720 in Green’s RIMCMC paper [2] slightlydified to allow for
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the fact thaK components correspond Ko— 1 changepoints, and we obtain:

 P(KI41) 2KI(2KT 4 1) (bjy1—b')(bT —bj) _  disgy(M—2)
A PIKY)  (m-22 ](bj+1—bj) J’Bb_w (24)

For K = K* the birth of a new changepoint is invalid and the Markov chasiteft
unchanged.

We note that the proposal probabilitieg andd 1) for birth and death moves can
be chosen as follows:

bK:C-min{l,P(lf(I)l)}, d(KH):c-min{l,lm} (25)

wherec is a constant that can be choosen as large as possible dolifeeiconstraint

bk +dx <0.9forK =1,...,K*. This choice yields both a certain acceptance rate of
the MCMC sampling scheme [2] and a simple prior probabilitggtings) ratio. From

bi - P(K') = dikita)- P(K' +1) it follows _that the ratiaj(Ki+1)/bKi in the expression

Ry cancels out against the prior raf¢K' 4+ 1) /P(K'") in the expressiomy,, and the
prior probability ratio simplifies to:

2(2K' +1) (bj1—b")(b" —by)
(m-2) (bj+1—bj)
(iii) A changepoint death move (d) is the reverse of the hinthve, and we obtain:

 m-2) (ba-by
RiBd = 5(2KT— 1) (B4~ BT} (B' —b;) @7)

RoBp = (26)

References

1. Geiger, D., Heckerman, D.: Learning Gaussian networkacd@dings of the Tenth Conference on
Uncertainty in Artificial Intelligence pp. 235-243 (1994)

2. Green, P.: Reversible jump Markov chain Monte Carlo contfmrtand Bayesian model determination.
Biometrika82, 711-732 (1995)

3. Grzegorczyk, M., Husmeier, D., Edwards, K., Ghazal, PllaviA.: Modelling non-stationary gene
regulatory processes with a non-homogeneous Bayesian rkedwd the allocation sampler. Bioinfor-
matics24, 2071-2078 (2008)

4. Husmeier, D.: Sensitivity and specificity of inferring @¢io regulatory interactions from microarray
experiments with dynamic Bayesian networks. Bioinformatigs2271-2282 (2003)

5. Ko, Y., Zhai, C., Rodriguez-Zas, S.: Inference of gendwways using Gaussian mixture models. In:
BIBM International Conference on Bioinformatics and Bionuae, pp. 362—367. Fremont, CA (2007)

6. Madigan, D., York, J.: Bayesian graphical models for ditedata. International Statistical Revié®
215-232 (1995)

7. Nobile, A., Fearnside, A.: Bayesian finite mixtures with amknown number of components: The
allocation sampler. Statistics and Computitf2), 147-162 (2007)



