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Abstract This paper provides the technical details, which for space restrictions could
not be included in the main paper ’Modelling non-stationarydynamic gene regulatory
processes with the BGM model’ submitted to theComputational Statisticsjournal.
The three sections of this paper are organized as follows: InSection 1 we provide
details about the GaussianBGescoring metric for static Bayesian networks as devel-
oped by Geiger and Heckerman [1]. TheBGescoring metric for dynamic Bayesian
networks is described in detail in Section 2. Section 3 is an extended version of the
methodology section of our main paper. We note that Subsections 3.1 and 3.2 have
been modified slightly by adding references to the equationsprovided in Sections 1
and 2 of this supplementary paper. Subsection 3.3 is an substantially extended ver-
sion of Section 2.3 (main paper) and provides all details of the changepoint process
from Green’s RJMCMC paper [2].
Availability: This supplementary paper is available from:
http://www.statistik.tu-dortmund.de/cost2010.html

1 The Gaussian BGe scoring metric for static Bayesian networks

This section describes the linear Gaussian BGe scoring metric (Bayesian metric for
Gaussian networks having score equivalence) for static Bayesian networks as devel-
oped by Geiger and Heckerman [1]. Given a data setD with m observations of the
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variablesX1, . . . ,XN:

D =




D1,1 D1,2 . . . D1,m−1 D1,m

D2,1 D2,2 . . . D2,m−1 D2,m
...

...
...

...
...

DN,1 DN,2 . . . DN,m−1 DN,m


 (1)

so thatDn, j denotes thejth realization of thenth nodeXn, and thejth column ofD:
D., j = (D1, j , . . . ,DN, j)

T is the jth realization vector of the variables. The Gaussian
BGe model assumes that the observation vectorsD., j ( j = 1, . . . ,m) are a random
sample from a multivariate Gaussian distributionN (µ,Σ) with an unknown mean
vectorµ and an unknown covariance matrixΣ . The prior joint distribution ofµ and
W = Σ−1 is supposed to be the normal-Wishart distribution, that is,the conditional
distribution ofµ givenW is N (µ0,(v·W)−1) with v > 0, and the marginal distribu-
tion of W is a Wishart distribution withα > N+1 degrees of freedom and precision
matrixT0, denotedW (α,T0). The conditionα > N+1 ensures that the second mo-
ments of the posterior distribution are finite (see also Eq. (26) in [1]). Geiger and
Heckerman show that the marginal likelihoodP(D|G ) of the dataD given a graph
G can then – under fairly weak conditions of parameter independence and parameter
modularity – be computed in closed form. We define:

TD,m := T0 +SD,m+
v·m
v+m

(µ0−Dm)(µ0−Dm)T (2)

where

Dm :=
1
m

m

∑
j=1

D., j (3)

is the mean of them realization vectors and

SD,m :=
m

∑
j=1

(D., j −Dm) · (D., j −Dm)T (4)

T0, µ0, α, andv are hyperparameters of the normal-Wishart prior and have tobe
specified in advance.T0 is anN-by-N matrix, µ0 is a N-by-1 column vector, andv
andα are 1-dimensional and usually referred to as total prior precision parameters.
Furthermore, we set:

c(n,α) :=

{
2α·n/2 ·πn·(n−1)/4 ·

n

∏
i=1

Γ (
α +1− i

2
)

}−1

(5)

The marginal likelihood can then be computed as follows ([1]):

P(D|G ) =
N

∏
n=1

Ψ(Dπn
n ) =

N

∏
n=1

P(D{Xn,πn}|GF({Xn,πn})

P(D{πn}|GF(πn))
(6)

whereXn is thenth variable,πn is the parent set ofXn in the graphG , D{Xn,πn} and
D{πn} are the data submatrices corresponding to the realizationsof the variables in
the sets{Xn,πn} and{πn} only, andGF({Xn,πn}) andGF(πn) correspond to so-called



3

full graphsfor the variable subsets{Xn,πn} and{πn}, that is, to subgraphs with the
maximal number of edges so that the subgraphs do not impose any independence
restrictions on these subsets of variables.

The marginal likelihood of the data subsetD{S} ⊂ D corresponding to them re-
alizations of theN†-dimensional subsetS⊂ {X1, . . . ,XN} of theN variables given a
full graphGF(S) for the sub-domainScan be computed as follows ([1]):

P(DS|GF(S)) = (2π)−
N†·m

2 ·

{
v

v+m

}N†/2

·
c(N†,α)

c(N†,α +m)
(7)

·det(TS
0)

α
2 ·det(TS

D,m)−
α+m

2

wheredet(TS
0) and det(TS

D,m) denote the determinants of the submatricesTS
0 and

TS
D,m consisting only of thoseN† rows and columns that correspond to variables in

the subsetS. TD,m was defined in Eq. (2), andc(N†,α) and c(N†,α + m) can be
computed with Eq. (5).

2 The Gaussian BGe scoring metric for dynamic Bayesian networks

We now consider the case that instead of independent observations, time series data
have been collected for the domain:(X1(t), . . .XN(t))t=1,...,m, and that we have a (1st-
order) Markovian dependence structure. In this case, dynamic Bayesian networks
(DBNs) can be employed. In DBNs each edge corresponds to an interaction with a
time delayτ; e.g. forτ = 1 an edge pointing fromXi to Xj means that the realiza-
tion x j,t of Xj at time pointt is influenced by the realizationxi(t − 1) of Xi at the
previous time pointt −1. This can be taken into consideration in the context of the
Gaussian BGe model by building new data matrices – one for each domain variable
– from the original data matrix of sizeN-by-mgiven in Eq. (1). For dynamic data the
columns do not represent independent (steady-state) observations: thetth column of
D is the realization of the variables at time pointt (t = 1, . . . ,m). We note that the
score equivalence aspect of theBGemodel is not required for dynamic Bayesian net-
works, because edge reversals are not permissible. However, formulating the models
in terms of theBGescore is advantageous in case one intends to adapt the framework
proposed in the main paper to non-linear static Bayesian networks along the line of
[5].

In principle, there are two alternatives which can be used, and it depends on
whether or not ’self-feedback loops’, that is edges having the same node as starting
and end point, should be allowed in the network. Here, we allow for ’self-feedback
loops’, and we build the followingN matrices of size(N + 1)-by-(m−1) from the
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(time series) data matrix given in Eq. (1) :

D(n) =




D1,1 D1,2 . . . D1,m−1

D2,1 D2,2 . . . D2,m−1
...

...
...

...
DN,1 DN,2 . . . DN,m−1

Dn,2 Dn,3 . . . Dn,m




(8)

n = 1, . . . ,N. That is, we obtainD(n) by deleting the last column ofD and adding a
novel row(Dn,2, . . . ,Dn,m), i.e. thenth row ofD shifted leftwards by 1, as the(N+1)-
th row. We can identify the(N + 1)-th row with a new domain variableXN+1. This
new variable is thenth domain variable with a time shift of sizeτ = 1 and we note
that the novel data matricesD(n) consist of observations forN+1 domain variables
so that the hyperparametersT0 andµ0 have to be an(N+1)-by-(N+1) matrix and an
(N+1)-by-1 column vector, respectively, here. As before we can compute the matrix
TD(n) for each data setD(n), and we replace Eq. (6) by:

P(D|G ) =
N

∏
n=1

Ψ(Dπn
n ) (9)

where

Ψ(Dπn
n ) =

P(D(n){XN+1,πn}|GF({XN+1,πn})

P(D(n){πn}|GF(πn))
(10)

Eq. (7) has to be replaced by:

P(D(n)S|GF(S)) = (2π)−
N†·(m−1)

2 ·

{
v

v+(m−1)

}N†/2

·
c(N†,α)

c(N†,α +(m−1))

·det(TS
0)

α
2 ·det(TS

D(n),(m−1))
−

α+(m−1)
2

(11)

whereGF(S) is a full graph for the domain variable subsetSof cardinalityN† andTS
0

andTS
D(n),(m−1) are sub-matrices as explained in Section 1.

3 Methodology

3.1 The dynamic BGe network (duplicated from the main paper)

Dynamic Bayesian networks(DBNs) are flexible models for representing probabilis-
tic relationships among variablesX1, . . . ,XN. The graphG of a DBN describes the
relationships among the variables, which have been measured at equidistant time
points t = 1, . . . ,m, in the form of conditional probability distributions. An edge
pointing fromXi to Xj means that the realisation ofXj at time pointt, symbolically:
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(a) recurrent network (b) unfolded dynamic network (DBN)

Fig. 1 State space graph and corresponding dynamic Bayesiannetwork. (a) Recurrent state space
graph containing two nodes. NodeX has a recurrent self-loop and acts as a regulator of nodeY. (b) The
bipartite graph structure (DBN) imposed by the graphG in panel (a).

Xj(t), is influenced by the realisation ofXi at time pointt−1, symbolically:Xi(t−1).
πn = πn(G ) denotes the parent node set of nodeXn in G , i.e. the set of all nodes from
which an edge points to nodeXn in G . In principle, each node can be its own par-
ent node in DBNs. Such self-loopsXn(t −1) → Xn(t) model autocorrelations, and it
depends on the application whether or not they should be allowed. Alternatively, self-
loops can be ruled out altogether to focus on a gene’s interactions with other genes.
We note that a DBN is based on a bipartite graph structure between two time stepst
andt +1 so that the acyclicity constraint – known from static Bayesian networks – is
guaranteed to be satisfied. The bipartite graph structure ofDBNs is illustrated graph-
ically in Fig. 1. The figure shows the state space representation (a) and the bipartite
graph structure of the corresponding DBN (b). The network consists of two interact-
ing nodesX andY. NodeX regulates nodeY, andX also has a regulatory self-loop
acting back on itself.

Given a data setD, whereDn,t andDπn,t are thetth realisationsXn(t) andπn(t)
of Xn andπn, respectively, DBNs are based on the following homogeneousMarkov
chain expansion:

P(D|G ,θ) =
N

∏
n=1

m

∏
t=2

P(Xn(t) = Dn,t |πn(t −1) = Dπn,t−1,θ n) (12)

whereθ is the total parameter vector, composed of subvectorsθ n. θ n specifies the
nth local conditional distributionP(Xn(t)|πn(t −1),θ n) in the factorisation. We note
that in DBNs with time lagτ = 1 the first time pointt = 1 cannot be employed for
computing the likelihood in Eq. (12), since the realisations of potential parent nodes
at the previous time pointt = 0 are unknown. The BGe model [1] from Section 2
specifies the distributional formP(D|G ,θ) = P(D|G ,(µ,W−1)) as a multivariate
Gaussian distribution with expectation vectorµ and precision matrixW, and assumes
a normal-Wishart distribution as prior distributionP(µ,W|G ). The local probability
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distributionsP(Xn(t)|πn(t−1),θn) are then given by conditional linear Gaussian dis-
tributions. Under fairly weak conditions imposed on the parameter vectorθ and the
prior distributionP(θ), the parameters can be integrated out analytically as shownin
Section 2 and the marginal likelihood satisfies the same expansion rule as the DBN
with fixed parameters [1]:

P(D|G ) =
∫

P(D|G ,θ)P(θ |G )dθ =
N

∏
n=1

Ψ(Dπn
n ) (13)

where

Ψ(Dπn
n ) =

∫ m

∏
t=2

P(Xn(t) = Dn,t |πn(t −1) = Dπn,t−1,θ n)P(θ n|πn)dθ n (14)

and Dπn
n := {(Dn,t ,Dπn,t−1) : 2 ≤ t ≤ m} denotes the subset of the data pertaining

to nodeXn and its parent setπn. For the Gaussian BGe model the (local) factors
Ψ(Dπn

n ) in Eq. (14) can be computed in closed-form according to Eqn. (10) and (11)
in Section 2.
A sample of graphs from the posterior distributionP(G |D) can be obtained with
Markov chain Monte Carlo (MCMC) simulations. The structureMCMC algorithm of
[6] generates a sample of graphs as follows: A new candidate graphGi+1 is randomly
drawn out of the set of graphsN (Gi) that can be reached from the current graphGi

by deletion or addition of a single edge, and the proposed graphGi+1 is accepted with
probabilityA(Gi+1|Gi) = min{R,1} where

R=
P(D|Gi+1)P(Gi+1)

P(D|Gi)P(Gi)
·

|N (Gi)|

|N (Gi+1)|
(15)

otherwise the chain is left unchanged:Gi+1 := Gi . For each edge the fraction of sam-
pled graphs that contain this edge is an estimator of its (marginal) posterior proba-
bility. If the true network is known, the reconstruction accuracy can for example be
measured in terms of receiver operator characteristic (ROC) curves (e.g. [4]). We as-
sume thatei j = 1 indicates that there is an edge fromXi to Xj in the graph, while
ei j = 0 indicates that this edge is not present. BNs infer marginalposterior probabili-
tiesêi j for each edgeei j .
Let ε(θ) =

{
ei j |êi j > θ

}
denote the set of edges whose probabilities exceed a given

thresholdθ . Givenθ the number of true positive (TP), false positive (FP), and false
negative (FN) edge findings can be counted, and thesensitivity S= TP/(TP+FN)
and theinverse specificity I= FP/(TN+FP) can be computed. This procedure can
be repeated for several values ofθ and the ensuing sensitivities can be plotted against
the corresponding inverse specificities. This gives the ROCcurve. Larger areas un-
der the curve (AUC) indicate a better network reconstruction performance, where
AUC= 1 is an upper limit, while AUC= 0.5 corresponds to random expectation. An
alternative and more intuitive criteria is given by(FP|TP = 10) counts: For each
MCMC output a thresholdψ is imposed on the inferred edge posterior probabilities
such that 10 true positive (TP) edges are extracted and the corresponding number of
false positive (FP) edges, symbollicaly(FP|TP= 10), exceeding the thresholdψ, is
counted.
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3.2 The dynamic Bayesian Gaussian Mixture (BGMD) Bayesian network model
(duplicated from the main paper)

In the Gaussian BGe model the local distributionsP(Xn(t)|πn(t −1),θn) are condi-
tional linear Gaussian distributions so that only linear relationships among variables
can be inferred. We generalise the BGe model by the introduction of a latent allo-
cation vectorV, which assigns the data points toK different mixture components,
whereK is inferred from the data by applying changepoint birth and death moves,
along the line of the reversible jump Markov chain Monte Carlo (RJMCMC) algo-
rithm of [2]. As in the original BGM model [3], conditional onthe latent vectorV, a
separate BGe score can be computed for each of theK mixture components.
The allocation vectorV of size m describes the allocation of the time pointst =
2, . . . ,m to theK compartments.V(t) = k denotes that time pointt (2 ≤ t ≤ m) is
allocated to thek-th compartment (1≤ k≤ K), andD(V,k) denotes all time points that
are allocated to compartmentk.
The posterior probability ofG , V andK is proportional to the joint distribution:

P(G ,V,K|D) =
P(G ,V,K,D)

P(D)
∝ P(G ,V,K,D) (16)

and the joint distribution can be factorised as follows in the BGMD model:

P(G ,V,K,D) = P(K)P(V|K)P(G )P(D|G ,V,K) (17)

where

P(D|G ,V,K) =
K

∏
k=1

P(D(V,k)|G ) =
K

∏
k=1

N

∏
n=1

Ψ(D(V,k),πn
n ) (18)

andD(V,k),πn
n := {(Dn,t ,Dπn,t−1)|t ∈ {2, . . . ,m} : V(t) = k} denotes the set of realisa-

tions of nodeXn and its parent setπn for those time points that have been allocated to
thekth component. It can be seen from these equations thatV acts as a filter which
divides the dataD into K different compartmentsD(V,k) (k = 1. . .K), for which sep-
arate independent BGe scores can be computed in closed-formusing Eqns. (13) and
(14). The BGMD counterpart of Eq. (14) is given by:

Ψ(D(V,k),πn
n ) =

∫
∏

t:V(t)=k

P(Xn(t) = Dn,t |πn(t −1) = Dπn,t−1,θ n)P(θ n|πn)dθ n (19)

When a data compartmentD(V,k) is empty, then we set the factorsΨ(D(V,k),πn
n ) equal

to 1 (n= 1, . . . ,N). TheΨ(D(V,k),πn
n ) terms that correspond to non-empty data (sub)sets

D(V,k),πn
n can be computed with Eqn. (10) and (11) from Section 2. The data setDπn

n

in Eq. (10) has to be replaced by the subsetD(V,k),πn
n , andD(n)S in Eq. (11) has to be

replaced by the subset
(

D(V,k),πn
n (n)

)S
.

For P(G ) we take a uniform distribution over all graph structures subject to a fan-in
restriction of|πn| ≤ 3, and forP(K) we take a truncated Poisson distribution with
λ = 1 restricted to 1≤ K ≤ K⋆ as prior. In our applications we setK⋆ = 10, i.e.



8

we restrict the maximal number of compartmentsK to 10. We note that the MCMC
inference scheme, which we will discuss in the next subsection, does not sampleV di-
rectly, but is based on local modifications ofV based on changepoint birth, death and
reallocation moves. That is, different from the free allocation in the BGM model [3],
we here elect to change the assignment of data points to components via a change-
point process [2]. This reduces the complexity of the allocation space and incor-
porates our prior knowledge that adjacent time points are likely to be assigned to
the same component. We identifyK with K − 1 changepoints:b1, . . . ,bK−1 on the
continuous interval[2,m], and for notational convenience we introduce the pseudo-
changepointsb0 = 2 andbK = m. The observation at time pointt is assigned to
the kth component, symbolicallyV(t) = k, if bk−1 ≤ t < bk. Following [2] we as-
sume that the changepoints are distributed as the even-numbered order statistics of
L := 2(K −1)+ 1 pointsu1, . . . ,uL uniformly and independently distributed on the
interval [2,m]. The motivation for this prior, instead of takingK −1 uniformly dis-
tributed points, is to encouragea priori equal spacings between changepoints, i.e. to
discourage (too) short segments.

3.3 MCMC inference (extended version of the main paper)

We now describe an MCMC inference algorithm that can be used to obtain a sample
{G i ,V i ,K i}i=1,...,I from the posterior distributionP(G ,V,K|D). Our algorithm com-
bines the structure MCMC algorithm for Bayesian networks [6] with the changepoint
model (e.g. see [2]), and draws on the fact that conditional on the allocation vector
V, separate BGe scoresP(D(V,k)|G ) can be computed for theK data compartments.
Note that this approach is equivalent to the idea underlyingthe allocation sampler
[7]. The resulting algorithm is effectively an RJMCMC sampling scheme in the dis-
crete space of network structures and latent allocation vectors, where the Jacobian in
the acceptance criterion is always 1 and can be omitted. Withprobability p = 0.5 we
perform a traditional structure MCMC move on the current graph G i and leave the
latent vectorV and the number of mixture componentsK unchanged, symbolically:
V i+1 = V i andK i+1 = K i . A new candidate graphG i+1 is randomly drawn out of the
set of graphsN (G i) that can be reached from the current graphG i by deletion or
addition of one single edge. The proposed graphG i+1 is accepted with probability:

A(G i+1|G i) = min

{
1,

P(D|G i+1,V i ,K i)

P(D|G i ,V i ,K i)
·
P(G i+1)

P(G i)
·

|N (G i)|

|N (G i+1)|

}
(20)

where|.| is the cardinality, and the marginal likelihood terms have been specified in
Eq. (18). The graph is left unchanged, symbolicallyG i+1 := G i , if the move is not
accepted. We note that the network reconstruction will be based on the marginal pos-
terior probabilities of the individual edges, which can be estimated for each edge from
the MCMC sampleG 1, ...,G I by the fraction of graphs in the sample that contain the
edge of interest:

Êi, j =
I

∑
k=1

Ii, j(G
k) (21)
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whereIi, j(.) is the indicator function withIi, j(G k) = 1 if there is an edge fromXi to
Xj in G k.
With the complementary probability 1− p we leave the graph unchanged:G i+1 = G i ,
and perform a move on(V i ,K i). We change the current number of componentsK i via
a changepoint birth or death move, or the allocation vectorV i by a changepoint re-
allocation move along the lines of the Reversible Jump Markov chain Monte Carlo
algorithm (RJMCMC) algorithm [2].
The changepoint birth (death) move increases (decreases)K i by 1 and may also have
an effect onV i . The changepoint reallocation move leavesK i unchanged and may
have an effect onV i . If with probability (1− p) a changepoint move on(K i ,V i) is
performed, we randomly draw the move type. Under fairly mildregularity conditions
(ergodicity), the MCMC sampling scheme converges to the desired posterior distri-
bution if the equation of detailed balance is fulfilled [2]. The condition of detailed
balance implies that for each move a complementary move is defined, and that the
acceptance probability depends on the proposal probability of the complementary
move. The moves presented below are designed such that thereis a unique comple-
mentary death move for each birth move and vice-versa. Moreover, each reallocation
move can be reversed by a single (complementary) reallocation move. The accep-
tance probabilities for these three changepoint moves(K i ,V i) → (K i+1,V i+1) are of
the following form [2]:

A = min

{
1,

P(D|G i ,V i+1,K i+1)

P(D|G i ,V i ,K i)
×R×B

}
(22)

whereR = P(V i+1|K i+1)P(K i+1)/P(V i |K i)P(K i) is the prior probability ratio, and
B is the inverse proposal probability ratio. The exact form ofthese factors depends
on the move type. (i) For a changepoint reallocation (r) we randomly select one of
the existing changepointsb j ∈ {b1, . . . ,bK−1}, and the replacement valueb†

j is drawn
from a uniform distribution on[b j−1,b j+1] whereb0 = 2 andbK = m. Hence, the
proposal probability ratio is one, the prior probabilitiesP(K i+1) = P(K i) cancel out,
and the remaining prior probability ratioP(V i+1|K i+1)/P(V i |K i) can be obtained
from p.720 in Green’s RJMCMC paper [2]:

Rr =
(b j+1−b†

j )(b
†
j −b j−1)

(b j+1−b j)(b j −b j−1)
, Br = 1 (23)

If there is no changepoint (K i = 1) the move is rejected and the Markov chain is
left unchanged. (ii) If a changepoint birth move (b) onK i is proposed, the location
of the new changepointb† is randomly drawn from a uniform distribution on the
interval [2,m]; the proposal probability for this move isbi

K/(m− 2), wherebK i is
the (K i-dependent) probability of selecting a birth move. The reverse death move,
which is selected with probabilityd(K i+1), consists in discarding randomly one of the
(K i −1)+1 = K i changepoints. The inverse proposal probability ratio is thus given
by B = d(K i+1)(m−2)/bK i K i . The prior probability ratio is given by the expression
at the bottom of p.720 in Green’s RJMCMC paper [2] slightly modified to allow for
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the fact thatK components correspond toK−1 changepoints, and we obtain:

Rb =
P(K i +1)

P(K i)

2K i(2K i +1)

(m−2)2

(b j+1−b†)(b†−b j)

(b j+1−b j)
, Bb =

d(K i+1)(m−2)

bK i K i (24)

For K i = K⋆ the birth of a new changepoint is invalid and the Markov chainis left
unchanged.
We note that the proposal probabilitiesbK andd(K+1) for birth and death moves can
be chosen as follows:

bK = c·min

{
1,

P(K +1)

P(K)

}
, d(K+1) = c·min

{
1,

P(K)

P(K +1)

}
(25)

wherec is a constant that can be choosen as large as possible subjectto the constraint
bK +dK ≤ 0.9 for K = 1, . . . ,K⋆. This choice yields both a certain acceptance rate of
the MCMC sampling scheme [2] and a simple prior probability (Hastings) ratio. From
bK i ·P(K i) = d(K i+1) ·P(K i +1) it follows that the ratiod(K i+1)/bK i in the expression
Rb cancels out against the prior ratioP(K i +1)/P(K i) in the expressionBb, and the
prior probability ratio simplifies to:

RbBb =
2(2K i +1)

(m−2)

(b j+1−b†)(b†−b j)

(b j+1−b j)
(26)

(iii) A changepoint death move (d) is the reverse of the birthmove, and we obtain:

RdBd =
(m−2)

2(2K i −1)

(b j+1−b j)

(b j+1−b†)(b†−b j)
(27)
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